No aids are allowed except the formula sheet provided in the examination hall and pens, pencils and erasers. The result will be posted at the latest on Wednesday, November 1 at 12:00.

1. Which of the following series are convergent?

a) \[\sum_{k=1}^{\infty} \left(\frac{2 + i}{1 + 2i} \right)^k, \]
 b) \[\sum_{k=1}^{\infty} \frac{(k!)^2}{(2k)!}, \]
 c) \[\sum_{k=2}^{\infty} \frac{(-1)^kk}{k^2 - k}. \]

2. Find a solution \(u(x, t) \) to the following problem:
 \[
 \begin{aligned}
 \partial_t u(x, t) &= 3\partial_x^2 u(x, t), & 0 < x < \pi, \quad t > 0, \\
 u(0, t) &= u(\pi, t) = 0, & t > 0, \\
 u(x, 0) &= \sin 2x \cos 4x, & 0 < x < \pi.
 \end{aligned}
 \]

3. Let the function \(u \) be defined by
 \[u(x) = \sinh x = \frac{e^x - e^{-x}}{2}, \quad -\pi < x \leq \pi. \]
 and \(u(x + 2\pi) = u(x) \) for any \(x \in \mathbb{R} \).
 a) Find the Fourier series of \(u \).
 b) Find the sum of the series
 \[\sum_{n=1}^{\infty} \frac{n^2}{(n^2 + 1)^2}. \]

4. Find a power series solution \(u \) to the differential equation
 \[xu''(x) + (1 + x)u'(x) + 2u(x) = 0, \quad u(0) = 1. \]
 Determine the radius of convergence and express \(u \) by means of elementary functions.

5. Find a function \(u \) such that
 \[\int_{-\infty}^{\infty} u(x - y) e^{-|y|} dy = e^{-x^2/2} \]
 for all real \(x \).

6. Set
 \[s(x) = \sum_{k=1}^{\infty} \frac{x}{1 + k^2 x^2}. \]
 a) Show that \(s(x) \) is convergent for all real numbers \(x \).
 b) Show that the function \(s \) is continuous for \(x > 0 \) and for \(x < 0 \).
 c) Is \(s \) continuous at 0?