1. Find the radius of convergence for the following power series:
 a) \(\sum_{k=1}^{\infty} \frac{k^2}{k^3 + 1} x^k \),
 b) \(\sum_{k=0}^{\infty} \left(\frac{1 + i}{1 + 2i} \right)^k x^k \),
 c) \(\sum_{k=1}^{\infty} \frac{(k!)^2}{(2k)!} x^k \).

2. Find a solution \(u(x, t) \) to the following problem:
 \[
 \begin{align*}
 \partial_t u &= 2 \partial_x^2 u(x, t), \\
 \partial_x u(0, t) &= \partial_x u(\pi, t) = 0, \quad t > 0, \\
 u(x, 0) &= (\sin x)^4, \quad 0 < x < \pi.
 \end{align*}
 \]

3. Let the function \(u \) be defined by
 \[u(x) = e^x, \quad 0 \leq x < 2\pi. \]
 and \(u(x + 2\pi) = u(x) \) for any \(x \in \mathbb{R} \).
 a) Find the Fourier series of \(u \).
 b) What is the sum of the series for \(x = 0 \)?
 c) Find the sum of the series
 \[\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}. \]

4. Determine a power series \(u(x) \) solving the problem
 \[u''(x) - 2xu'(x) - 4u(x) = 0, \quad u(0) = 0, \quad u'(0) = 1, \]
 Determine the radius of convergence and express \(u(x) \) by means of elementary functions.

5. a) Find the Fourier transform of the function
 \[u(x) = \frac{x}{1 + x^2}. \]
 b) Compute the integral
 \[\int_{-\infty}^{\infty} \frac{x^2}{(1 + x^2)^2} dx. \]
6. Set

\[s(x) = \sum_{n=1}^{\infty} \frac{nx}{1 + n^4x^2}. \]

a) Show that \(s(x) \) is convergent for all real numbers \(x \).

b) Show that the function \(s \) is continuous for \(x > 0 \) and for \(x < 0 \).

c) Is \(s \) continuous at 0?