1. Which of the following series are convergent?
 a) $\sum_{k=1}^{\infty} \frac{\sqrt{k} + 1}{2k^2 - 1}$,
 b) $\sum_{k=1}^{\infty} \frac{\sqrt{k} + 1}{2k - 1}$,
 c) $\sum_{k=1}^{\infty} (-1)^k \frac{\sqrt{k} + 1}{2k - 1}$.

2. Find a power series solution of the problem

 $$xy'' + (1 - 2x)y' - y = 0, \quad y(0) = 1.$$

3. Solve the heat conduction problem

 $$\partial_t u(x, t) = 4\partial^2_x u(x, t), \quad 0 \leq x \leq \pi, \quad t > 0,$$
 $$\partial_x u(0, t) = \partial_x u(\pi, t) = 0, \quad t > 0,$$
 $$u(x, 0) = \cos x \cos 3x, \quad 0 \leq x \leq \pi.$$

4. Show that the sequence $(f_n)_{n=1}^{\infty}$ is uniformly convergent in the interval $[0, \infty)$ where

 $$f_n(x) = x^2 e^{-nx}, \quad x \geq 0.$$

5. Let a be a real number in the open interval $(0, 1)$, and let u be the 2π-periodic function for which $u(x) = \cos ax$ when $-\pi \leq x \leq \pi$.
 a) Find the Fourier series expansion of u.
 b) Prove that

 $$\sum_{n=1}^{\infty} \frac{2a}{a^2 - n^2} = \pi \cot a\pi - \frac{1}{a}, \quad 0 < a < 1.$$

 c) Integrate both sides with respect to a, and conclude that

 $$\sum_{n=1}^{\infty} \ln \left(1 - \frac{a^2}{n^2}\right) = \ln \left(\frac{\sin a\pi}{a\pi}\right), \quad 0 < a < 1,$$

 providing proper justification.
 d) Deduce the identity

 $$\frac{\sin a\pi}{a\pi} = \prod_{n=1}^{\infty} \left(1 - \frac{a^2}{n^2}\right), \quad 0 < a < 1.$$

Please, turn over!
and, by means thereof, Wallis’ product formula

\[
\frac{\pi}{2} = \frac{2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdot 8 \cdot 8 \cdot \cdots}{1 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7 \cdot 9 \cdot 9 \cdots}.
\]