Welcome to MATM23 Specialised Course in Differential Geometry, 7.5 credits

 General Information

MATM23 Specialised Course in Differential Geometry is an alternatively compulsory course for a Master of Science degree in mathematics.

This course is an introduction to the beautiful theory of Riemannian Geometrya subject with no lack of interesting examples. They are indeed the key to a good understanding of it and will therefore play a major role throughout the course. Of special interest are the classical Lie groups allowing concrete calculations of many of the abstract notions on the menu.

Teaching
The teaching consists of lectures.

Assessment
The module is assessed through an oral examination.

Course literature
No particular textbook will be used but the participants are recommended to have a look at some of the following:
 M. P. do Carmo, Riemannian Geometry, Birkhäuser (1992)
 D. Gromoll, W. Klingenberg, W. Meyer, Riemannsche Geometrie im Grossen, Lecture Notes in Math. 55, Springer (1975)
 S.Gudmundsson, An Introduction to Riemannian Geometry, Lund University (2017)
 W. Klingenberg, Riemannian Geometry, de Gruyter (1995)
 W. Kühnel, Differential Geometry: Curves - Surfaces - Manifolds, AMS (2006)
 Serge Lang, Fundamentals of Differential Geometry, Springer (1999)
 John M. Lee, Riemannian Manifolds, Springer (1997)
 B. O'Neill, Semi-Riemannian Geometry, Academic Press (1983)
 P. Petersen, Riemannian Geometry, Springer (2006)
 T. Sakai, Riemannian Geometry, Translations of Mathematical Monographs 149, AMS (1996).
 M Spivak, A Comprehensive Introduction to Differential Geometry, Publish or Perish (1979)

Lecturer
Sigmundur Gudmundsson. You find all relevant information for the course at the lecturer's course page.

Schedule

The schedule is available in the TimeEdit schedule tool. For instructions on how to use TimeEdit click here.
  
  
Syllabus_MATM23.pdfSyllabus_MATM23
Kursplan_MATM23.pdfKursplan_MATM23
EQUIS - European Quality Improvement System

June 16 - 17 LDC will perform maintenance work on the central network service. There may be disturbances.